A blue native polyacrylamide gel electrophoretic technology to probe the functional proteomics mediating nitrogen homeostasis in Pseudomonas fluorescens.

نویسندگان

  • Sungwon Han
  • Christopher Auger
  • Varun P Appanna
  • Joseph Lemire
  • Zachary Castonguay
  • Elchin Akbarov
  • Vasu D Appanna
چکیده

As glutamate and ammonia play a pivotal role in nitrogen homeostasis, their production is mediated by various enzymes that are widespread in living organisms. Here, we report on an effective electrophoretic method to monitor these enzymes. The in gel activity visualization is based on the interaction of the products, glutamate and ammonia, with glutamate dehydrogenase (GDH, EC: 1.4.1.2) in the presence of either phenazine methosulfate (PMS) or 2,6-dichloroindophenol (DCIP) and iodonitrotetrazolium (INT). The intensity of the activity bands was dependent on the amount of proteins loaded, the incubation time and the concentration of the respective substrates. The following enzymes were readily identified: glutaminase (EC: 3.5.1.2), alanine transaminase (EC: 2.6.1.2), aspartate transaminase (EC: 2.6.1.1), glycine transaminase (EC: 2.6.1.4), ornithine oxoacid aminotransferase (EC: 2.6.1.13), and carbamoyl phosphate synthase I (EC: 6.3.4.16). The specificity of the activity band was confirmed by high pressure liquid chromatography (HPLC) following incubation of the excised band with the corresponding substrates. These bands are amenable to further molecular characterization by a variety of analytical methods. This electrophoretic technology provides a powerful tool to screen these enzymes that contribute to nitrogen homeostasis in Pseudomonas fluorescens and possibly in other microbial systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High throughput two-dimensional blue-native electrophoresis: a tool for functional proteomics of mitochondria and signaling complexes.

The recent upsurge in proteomics research has been facilitated largely by streamlining of two-dimensional (2-D) gel technology and the parallel development of facile mass spectrometry for analysis of peptides and proteins. However, application of these technologies to the mitochondrial proteome has been limited due to the considerable complement of hydrophobic membrane proteins in mitochondria,...

متن کامل

In-gel activity staining of oxidized nicotinamide adenine dinucleotide kinase by blue native polyacrylamide gel electrophoresis.

Oxidized nicotinamide adenine dinucleotide (NAD(+)) kinase (NADK, E.C. 2.7.1.23) plays an instrumental role in cellular metabolism. Here we report on a blue native polyacrylamide gel electrophoretic technique that allows the facile detection of this enzyme. The product, oxidized nicotinamide adenine dinucleotide phosphate (NADP(+)), formed following the reaction of NADK with NAD(+) and adenosin...

متن کامل

Analysis of membrane protein complexes by blue native PAGE.

Blue native polyacryamide gel electrophoresis is a special case of native electrophoresis for high resolution separation of enzymatically active protein complexes from tissue homogenates and cell fractions. The method is powerful between 10 and 10,000 kDa. Also membrane protein complexes are separated well after solubilization of complexes with mild neutral detergents. The separation principle ...

متن کامل

Glutamine synthetase of pseudomonads: some biochemical and physicochemical properties.

The glutamine synthetases from several Pseudomonas species were purified to homogeneity, and their properties were compared with those reported for the enzymes from Escherichia coli and other gram-negative bacteria. The glutamine synthetase from Pseudomonas fluorescens was unique because it was nearly precipitated quantitatively as a homogeneous protein during dialysis of partially purified pre...

متن کامل

Overexpression of isocitrate lyase is an important strategy in the survival of Pseudomonas fluorescens exposed to aluminum.

Isocitrate lyase, ICL (EC 4.1.3.1), an enzyme that cleaves isocitrate into succinate, and glyoxylate appears to play a pivotal role in the detoxification of aluminum (Al) in Pseudomonas fluorescens. Here, we present evidence that the 4-fold increase in ICL activity observed in Al-stressed cells is due to the overexpression of this enzyme. Blue-Native-PAGE, Western blotting, and spectrophotometr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of microbiological methods

دوره 90 3  شماره 

صفحات  -

تاریخ انتشار 2012